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by

Elmor L. Peterson*

ABST3AC.~ The ordinary dual problem is characterized as an orthogonal
projection of the corresponding geometric dual problem--a projection that
can be obtained via a, auboptimization. This characterization endows —

g.ometric thi~1ity’ with certain strong advantages over ordinary duality.

Eeywords: Ordinary progre~ ning, geometric progra ing , duality’ theory,
orthogonal projection, suboptimization.
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1. Introduction. The ordinary dual. problem described herein was first

defined and studied by Falk (3]. It is an extens ion of the “Wolfe dual

problem” (9] and is more suitable for ordinary progre~’nl rig.

The geometric dual problem described herein was first define d

H P and studied by Peterson (1~,5] . It is a generalization of the “extended

geometric dual problem ” fir8t defined and studied by Duffin and Peterson

in Chapter 7 of (2]. The latter problem is , in turn , an extension of

the “posyn~wtn~.1 progrmiiwtng dual problem” originally defined and studi ed

by Duffin and Peterson [1) and further explored by Duffin , Peterson and

Zener [2].

Although a characterization of the oreli nary dual problem as an

orthogonal projection of the correspondin g geometric dual problem was

first announced in. [1~,5 1, a complete proof and its implication s are being

given here for the first time .

This proof utilizes a (geometric progr~uurui ng ) version of Penchel’s

duality theorem given by Rockafellar [8]. In. doing so, it also requires

some of the convexity theory in [8] --especially the theory having to

do with the “relative interior” (ri s) of an arbitrary convex set

s c (N-dimensiona l Euclid.ean space).

2 • The primal problem. A problem that is sufficientl y general to

encompass both the most general ordinary progr~ ’n4ng problem and the moat

‘
• general geometric progr~sing problem is given in section 2.2 of 

(5].1
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Using the same notation aud definition s , we can restat e that

- problem in the following concise way.

PROBlEM A. Using the feasible solution set
h

S = ((x,’C) € Cl x € X, and g~ (xt ) < 0 ,  1 € I}

and. the objective function value

G(x ,1C) ~~ g0 (x0 ) + ~ g (x ~,~c )
• • J ”  j

calculate both the problem infinmum

Ac - m t  G(x ,K )
(x,lc)€S

r and the optimal solution set

~~~~ ( (z, lC ) € SlG (x ,K ) = q~).

:1
Problem A is, by definition , the most general geometric pro-

gr~~n(ng problem, and example B on page 12 of (5] shows that it also

enc~~~asaes the moat general ordinary prcgr~nini rig problem.

2

i



3. The ordinary dual problem. The “ordinary Lagrangian” for problem A

is

~ G(x ,’c) + g (xt )
I

This Lagrangian gives rise to the following “ord~ n~ .1y dual problem.”

PROBlEM B0. Using the feasible solution ~~~

T (?~ € E , j ? >  0 and. in! L (x ,K~~) is finit e )
0 o~I , — (x, Ic)€C 0 —

x€X

and the objective function value

H (?~
)
~ in! L (x ,K~~),

° (x, K )GC ~
x€X

calcu.late both the pr oblem supremum

* = sup H (2 )
0 0

and the optimal. solution set

• T: ~ (?~ € T~ 1H0 ~~ =

Problem B0 is, of course, an extension of the “Wolfe dual problem ”

(9]. It was initially defined and studied by Falk (3] and is the appr opriate -

dual problem for ordinary prograzining.

Li~
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4. The gec~~trjc dual problem. In terms of the notation and definitions
in section 3.3 .2 of (5], the “geometric Lagrangian” for prob lem A is

L (x ,K;y ,~~) ~ (x ,y) - H (y ,A) - ~ K~h (yi)

This lagra ngian gives r ise to the following “geometric dual

problem .”

PROBlEM B. Using the feasible solution set

T~~ ( (y,?~) € DIy € Y, and h~ (y~ ) < 0, j € J)

and the objective funct ion value

H (y ,?~) ~ h (y° ) + ~~
I

calculate both the problem infimum

~n! H(y,?~)

and the opt imal, solution ~~~

T*~~ ( (y,~~) € T~H(y ,~~) = *3



A derivation of problem B from the tagrangian Lg is given in

(6] . However, problem B was initially defined and studied in (~i.,5].

It is, of course , an extension of the posynanial progr~~ning dual probl em

• originally defined and studied by Duf fin and. Peterson [1] and further

explored by Duffin , Peterson and Zener (2].

5. The key reformu lation. The key to the most fundamental relation

between the corresponding dual problems B0 and B is to reformn 1~te the

ordinary Lagrangian minimization (used to define the objective function

H0 (?~
) for problem B) as a special case of problem A. Since that nil nimi -

zat lon does not direct ly involve the constraints gj (xi ) < 0, i € I , it

can actually be reformulated as a special case of the unconstrained

version of problem A.

To obtain the unconstra ined version of problem A, simply let

both index sets I and J be empty and drop the (now unnecessary ) sub-

script 0 from the syi~bol g0:C 0. In addition , repla ce all rema(ning

‘1 ‘ s~nnbols with their script counterparts in. order to avoid ambiguous

notation when carrying out the desired reformulation.

The resulting unconstrained version of problem A can be given the

fo~~~~~g concise de~~~ition (in terms of the notation and de~~~itions in

section 2.1 of (5]) .
j  I. •

PROBlEM a. . Using the feasible solution set

H
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—(
calculate both the problem infimum

A ~~~~~~ 3(~
)

H and the optimal solution set

,J* 4~ 
~~~~.€ ~J l

;

(4.) =

Similarly, the geometric dual of problem a~ can be given the

following concise definition (in terms of the notation and definitions

in section 3.l.Ii. of ( 5 ] ) .

PROBlEM t8. Using the feasible solution set

A calculate both the problem infimim~

a

• and the optimal solution set

~~~~~~ ~~~~~~~ 

)

~ •

To reformulate the ordinary Lagrangian minimization as a special

case of problem CL, simply let the function domain

H H
6
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calculate both the problem inflmum

~~~~~~~~~ ~(‘~
)

•1
and the optimal. solution set

:1 J *A 
~ €J I~

(
~

) =

Similarly, the geometric dual of problem a.. can be given the

• 
following concise definition (in terms of the notation and definitions

in section 3.l.J i of ( 5 ] ) .

PROBlEM f~. Using the feasible solution set

calculate both the problem infimum

U

and the optima], solution set

: 1  ~ € Cl ~~~~~~~~ 
= .

To reformu late the ordinary Lagrangian minimization as a special

case of problem CL, simply let the function domain

6



C = ((x0,X’,x3,K) € E~tx
k € Ck k € (03 U I; (x3~K~ ) € c ,  j€ J )

and let the function value

~ L~ (x ,K;~~) = g0(x0) + Z g~ (x~, K~ ) + E

Also, let the cone

~~~~ ((x 0,x1,x~,K ) € E~I (X
0
,~~

1
,~~~~) € x~ K €

The presence of ?s. as a parameter in the resulting prob lem a.
will be indicated notationally by replacing the symbol Q. with the

symbol O~. (?*~) . Moreover , the pres ence of ?~ as a parameter in any

other entity will be indicated notationally in the same way.

Now, prob lem ~~?~) consists of using the feasible solution set

‘1~~~ 
((x ,K ) € C l x € X)

to calculate both the problem in.fimum

H (?~
)
~~ in! L (x,K;~ )

° (x ,K)€J °

and the optimal solution ~~~

•~ J*(~) 
~ ((X,K) € J I L 0 (x , K ;~~) =

7
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• To determ ine the nature of the resulting dual problem

we need to compute both the conjugate transform L ( ;~
) 4(?~

) of

the given function C . , ? ) : and the d.ua.1. of the given cone

6. The resulting dual problem. To compute J(”;?~
) :~~ (7) , first note that

= 
~ 

((y0,x0) + E (y~,x~> + E (y~,x~)
Cx ,x ,x

+ E ~~~~K -g ( x0) -E g~ (x~,K ) -~~~~ g.(x~ )3
J j j  

J j ii ~ 1

4 = sup [(y0,x0) - g (x°)] + E sup [(y~,x~) -?~.g (xi ) )
O I i  1

x € C 0 x€C i

+ sup t(y’~,x~) + K - g~ (x~,K ,)]
‘~
‘ 

(x~,ic~ )€C~

Consequently, ~~~~~~~~~~ € iO (7~) if and only if each term on the

right-hand side of the preceding equations is finite. Of course , the
fir st term is finite if and only if ~0 € D0, in which case the first
term is equal to h

0(y
0). The finiteness of the remaining terms can

be conveniently characterized with two leimnas.

The following lei~ a characterizes the finiteness of the terms

involving the index set I.

Le~~a A. Given that ?
~i,
> 0, the sup ( (y ~,xt ) - ?~ g~ (xi )] is finite if and

xi€C~, 
— _____

only if (~i~~~) € D~, in which case

S

. . - . -~



I
sup ((yi,xi) - ?~g~(x~)] = ~~~~~~~~

Z E C i

Proof. Simply observe that

sup (y t,xt) if ?~. 0

x€ C i

sup ((yi~j~i) - ?~g~(x~)] = ~~~~~~~~~~ if ?~~> 0 and €

x€C
+ ~ 

- 

if ?~ > 0 and. y~
’ ~

and then use the defln(ng formula for h~:D~. q.e.d.

The next lemma characterizes the finiteness of the terms involving

the index set J.

_ _  

i i  
_ _ _Le~~ B. The sup ((y ,x ) + ~~~~~ - g4 (x ,K~~

) ]  is finite if and
+ .J .J d

‘ix ,

• only if both y~ € D~ 
and h~ (1

i) + <0, in which case

sup 
+ 

((y~,x~) + ~~~~~ - g ( x 3 ,K~ )] = 0
(x

Proof. First, observe that

sup ((y~ ,x~) + K - g~
’ (x3 ,K )]

j + i i  j 3
(x

• 
• — sup ( sup ((y3,x3) + K - g4’(x3,Ic )l (X3 ,?C ) € C’)]

K > 0 j3 —

— sup (
~ 

IC
3 

+ sup ((yi ,x3 ) - g (x3 
, K

3
) I (x3 

, ic3 ) c c~ j ]
IC

3> O ~



/sup ((y3,x3) - sup (x 3 ,d3 ) f  sup (x3 ,d3 ) <+oo ) if K 0

f 
x3 d3€D

3 
d3€D

3

= sup ~~~I ( +
K > 0

sup ((y3 ,z3) - K~g3 
(x3/K

3 
) fx 3 fK

3 
€ C

3 ) if ‘C~ >0

I 
• 

/ 
0 if K~ = 0 and y~ €

( 
+ ~ jf K~ = 0 and y~ 

~= sup ~4 K4 + I
• K~ >0 “ “ + ~ if K~ > 0 and y~ ~

• 

• 

\cji~j  (73) if > o and 73 € D
3

• where the final step makes use of the fact that the zero function with

domain (the topological closure of D
3
) is the conjugate transform

• of the conjugate transform of the zero function with domain D
3
. Now,

note that the last expression is finite only if 73 € D
3
, in which case

the last expression clear ly

= sup (~ 3~ 3 
+ K

3
h

3 &
3 )]

Kj >0

• 1  But this expression is obviously finite if and only if h
3 

(73) + <~~~~,

in which case this expression is clear ly zero q.e.d .

r

We have now shown that the function domain

F-.

10
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8(x ) - t&
0,yhI,e) € E,~l~° € D0; (~i,~~ ) € D~, i € I;

€ D
3
, ~~ € E1, and h

3 
(p3 ) + <0, j € J);

and we have also shown that the function value

= ~~(~°
) + ~ Ii~(/,?~1

) ~ H(i~A).

Moreover, elementary considerations show that the cone

hi ~~~= ((yO,yhJ,6) E~l(y0,y1,y~) € Y, 6 0).

Therefore, problem (~ (?~.) consists of using the feasible solution set

dO~
)
~ ( 7€ E~ I (y,?~) € T )

to calculate both the problem infimum

A
• 

~tr (,~) = in! II (y, ? )

and the optimal solution set

(y €~~O’i(H(y,?.) —

Hence, the duality theory- relating problems a and ~~ can be

used to deduce important relations between the corresponding dual problems

B0 and B.
11
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7. The f d~~~nta], relati n. In view of the gener al dualit y theory in. sectim

3.l.li of (5], if the precedi~~ dual problems a(? ) and 8 ( )  are consistent

and have no duality ~~~~~~ , then

0 = R~(~ ) + *(~
)

in which event the ~~~jve -H0 (?~
) of the ordina~~ dual object ive function

value H0.(? ) is simply the (sub ) infimum * (?~) of the geometric dual

o~jective function value H(y,?~) over y.

Thus , the set of a.U. ?.. for which the preceding dual problems

a(?~
) and 8(~

) are consistent and have no duality- gap is of great interest.

It is, of course, a subset of both the ordinary dual feasible solution set

and an orthogonal projection

(?~ € E0(1) t~~
’ (?~

) is not empty)

• of the geometric dual feasible solution set T.

I

8. The main consequences. Primal problems A that exhibit iM n im~1ly

useful relations of the preceding type (between their corresponding dual

problems B0 and B) can be characterIzed in. the following way.

DEF~ 1ITI0N . Problem A is projectib le from ~~~~~~~~~~~~ dual prob lem B

to its ordinary dual problem B0 if

T0 -A

12
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• 0 ~ H0
()~) + *(?) for each ?~. € T~

The preceding terminolo~ r is appropriate because the two defining relations

simply assert that (the epigraph of) the negative -H0:T0 of the

ordinary- dual objective functi on H0:T0 is just an orthogonal pr ojecti on

of (the epigraph of) the geometri c dual objective function H:T.

The following proposition provides, in the context of closed

convex programming, a rather weak condition (involving relative interiors)

that is sufficient ly str ong to guarantee the projectibility of problem A.

PROPOSITION I. If

(i) both the functions g~:C~, k € (0) U I U 3, and the cone X

are convex and closed,

(ii) there exists a vector (X0 , K0 ) such that

(a) xo € ( rl X) ,

(b) Ok 
~ (ri Ck

) k € (0) U I,

t 0 3 O  +(c) (x ~K~) € (ri C3
) j € j

‘1 then

(I) problem A is projectible fron• its ~~~~~~~~ dual problem B

to its ordinary dual problem B0,

• • (ii ) the (sub)cptimal solution set ~~‘*(~~) is not empty for each

• 13
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Proof. First, note from the theory of relative interiors that problem

• O~(?) has a feasible solution (Z0 ,I~~ ) € J for each ?. Then, note that

conclusions (I) and (ii ) are impli ed by (in fact , are equivalent to) the

statement

problem a (~ ) has a finite in! imum U~ (i~) if and only if problem ~ ()~)

has a feasible solution y € 3 (?~), in which event 0 = H~ (?~) + 4’ (~
)

and ~ *(~ ) ~

F,
Now, observe that the preced ing statement is, in turn, implied

by Corolla ry 3A on page 23 of (5] together with the (unstated ) dual of

(Fenchel’s) Theorem 5 on page 26 of (5) (which is itself proved as

Theorem 31.li. on page 335 of (8] ) .  Consequent ly, we need only show that

the hypotheses of that corollary and theorem are implied by the hypotheses

of this proposition .

Toward that end, we first not e that elementary (though tedious )

considerations show that ( ;7~) : (‘~ inherits the convexity and closedness

of the g~:C~, k € (0) U I U J, and that ~~ inherits the convexity and

closedneas of X.

Finally , to show that (X0 ,i~~~) € (ri ‘% ) fl (ri ~
), we first use

the formulAs for ‘% and C! to derive comparable tor~ alas for (ri X)

and (ri C! )--two derivations that make crucial use of the following basic

facts :

(A) (ri. U) — U when U is a vector space,
‘I II

(B) (ii. v) - X (ri Vk
) when V - X V and the sets V are convex.

• 1 k k

l~ 



I
• Pact (A) is established on page ~~ of [8), and fact (B) can be obtained

• inductively from the form,a1aL at the top of page 149 of (8].

Now, the formulA for ~~ along with facts (A) and (B) implies that

(ri ~~) - ((x°,x
’,x3,K) € E (x°~x’,x3) € (ri x ) ; ic €

)breover, the form~11A for C!. along with facts (A) and (B) implies that

Ij (ri C!) = f (x°,x’,x3,K) € E~ Ixk € (ri ck ) , k € (0) U I; (~~~~~ K~~~)€  (ri c ) ,  j €J).

In particular then, the hypothesized vector (X° ,K° ) € (ri%) fl (ri C!).

q.e.d.
i~j 0

The following proposition brings to light the moat significant

implications of the projectibility of problem A.

PROPOSITION II. If problem A is projectible from its ~ecmetri c dual

problem B to its ordinary- dual problem B0, then the ordinary dual

supremum *~ is finite if and. only if the geometric dual infimum 4’
is finite; in. which case

- 

O = * ~~~~+ *

and

C? C E0(1) I (7~? % ) C T’ for some y~€ E~)

- I with equality holding if and only- if the (sub ) optimal solution set

3’ (
~

) is not empty for each ?.. € T~~.

H 15
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Proof. The defining equation for the set A and the defining relations

for problems B and (~ (?~
) readily imply that

F 4 ’- in f 9r(? ) (1)
I t

and that

• 

• T’ = ((y,~ ) C C A, *(?~) = 4’, an d y  € D~*(? )) . (2)

Now, in view of the defining relations for problem ~~ the

projectibility of problem A obviously implies that

0 = 4 ’  + thf *(?~) (3)

and that

= (?~ € AI4’(?-~) = 4’ ), (h. )

• with equation (i.) also having been used. in the derivation of equation (14).

Clearly, the initial conclusions of the proposition are implied

• by equations Ci) and (3), while the final conclusions are implied by

equations (2) and (14). q.e.d .

Taken together, Propositions I and II have the following important

• corollary.

0 

16

_ _  0



-• ~~~
—• — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~‘~ J • -

COROLlARY 1. If the hypotheses of Proposition I are satisfied, then 4’

is finite if and only if 4’ is finite; in which case

~

0

. — _ _  —— _ _  — _ _  — _ _  _ _

• O = 4’~~+ *

and

- (?~ € E0(1) I ( Y ~? % ) € T’ for some y) .

The scope of Corollary 1 can, of course, be inferred from an

.~~~1nation of the hypotheses of Proposition I. In. particular , since

it is widely known that neith er ordinary duality nor geometric duality

is of much significance in nonconvex programming, the convexity of both

k € (0) U I U 3 and X is not an unreasonably strong assumption.

Furthermore, since there seems to be no significant convex progr~~n1 ng

problems A involving either a nonclosed function g~: Ck or a nonclosed

cone X, the closedness of both g.~:C~) k € (0) U I U J and X is

also not an unreasonab ly strong assumption. (ActuaU.y , the replacement 0

of either a nonclosed ~~~~~ or a nonclosed X by its “closure” has

• a known , usually minor, effect on the problem infimum ~ and optimal

0

0

0 
solution set S*.) Consequently, the true scope of Corollary 3.

I
j ~ actually hinges on how frequently hypothesis (ii ) of Proposition I is

0 

satisfied in. the context of (closed) convex progrm~in 4 ng--a question that

will, now be e~r~~ined.

• 

0 

Fox’ many important problems A, the cone X is in fact a vector

spaces in which case fact (A) asserts that (ri x) = X. Hence , to treat 
0

such problems, it is conveni ent to rep lace condition (a) in hypothes is (ii)

with the condition

~t I 17
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(a’) X iaavect o r space , arnj Xe C X ,

which clearly does not disturb the validity of Proposition I and

Corollary 1.

For many important problems A, the set Ck is the whole vector

space E , k € (0) U I; in which case fact (A) asserts thatnk 
0(ri ck ) = E , k € [0) U I. Hence, to treat such problems, it is

convenient to replace condition (b ) in. hypothesis (ii) with the condition
(b’) Ck = E  k € ( 0 ) U I ,

which clearly does not disturb the validity of Pr oposition I and

Corollary 1.

For many important proble ms A, the index set 3 is empty; in which
cas e the condit ion (x°~ ,ic°

3
) € (ri c ) ,  j € J is vacuously satisfied.

Hence , to tre at such problems, it is convenient to replace condition Cc)
in hypothesis (ii) with the condit ion

(c ’) J is empty,

which clearly does not disturb the validity of Propoaition I and

Corollary - i.

LI For many important problems A, conditions (a ’) ,  (b ’) and (C ’)

are all, satisfied ; in which case the vector x° ~ 0 obviously satisfies
conditions (a), (b) end (c) in hypothesis (ii). Hence, to treat such

problems, it is convenient to replace hypothesis (ii ) with the hypothesis

IiL 18
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(ii’) X is a vector space; Ck = k C (0) U I; and. J is empty,

which does not , of course , disturb the validity of Proposition I and

Corollary 1.

Some very important problems A (discussed in [5] and the references

cited therein) that obviously satisfy hypothesis (ii’) are: posynomial

programming problems, quadratic progranining problems (with either linear

or quadratic constra ints ) , linear regression problems (with constraints

that bound norms), and optimal location problems . Although the most

general ordinary progr~ni~n1 ng problem (example 8 on page 12 of [5)) does

not generally satisfy hypothesis (ii’), it is not difficult to see that
• it does satisfy the original hypothesis (ii).

9. Some important implications. We have just observed that the conclusion

to Corollary 1 is valid for many (if not all) convex progr~i~i~iing problems

of interest. For all such problems A, the corresponding ordinary dual

problem B0 can be obtained by orthogonally projecti ng the correspondi ng

geometric dual problem B via a subopt imization--a property that endows

geometric duality with the following strong advantages over ordinary
0 duality.

For many important problem s A (including all posynomial progrPJ~m~ ng

• 1 • prob lems, all quadratic progreI~n1~4ng problems, all. linear regression

problems, and all optimal location problems), the corresponding geometric

dual. problem B can be expressed in terms of formulas that are as elementary

as the formulas expressing the primal, problem A. The fact that the
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corresponding ordinary dual problem B0 almost never has such an elementary

representation is just a reflection of the fact that any suboptimi zation

of a function represented in terms of elementary formulas rarely produces

a function that can be represented in terms of elementary formulas.

Of course, the geometric dual. pr oblem B has an independent vector

variable y that is not present in. the corresponding ordinary- dual

problem B0. However, there is no a priori reason why Yn4rrtml zing H(y,?~)

over y should be any more difficult than minimizing L
0 

(x,K;~ ) over

(x,K). tbre importantly, there is also no a priori reason why minimi zing

H (y,~ ) over y and ?.. jointly should be any more difficult than first
minimi zing L0(x,K;?*~) over (x ,K ) .  and then maximizing the result over

in. fact , the latter maximinimizat ion looks much more formidable than

the former joint minimization.

Finally, the geometric dual prob lem B sensitizes more parameters

in its primal problem A than does the correspondi ng ordina ry dual problem

• B0. As indicated in. sections 3.1.5 and 3.3.5 of [5], this fact makes

geometric duali ty more powerful than ordinary duality for parametric

0 
progr~ ining and post-opt {mR.ll ty analysis.

• In concluding, it is wort h mentioning that the precedi ng duality

between subopt imization and parameter delet ion is generalized and. more

thoroughly studied in [7].
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